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Abstract
Parallelism dominates modern hardware design, from multi-core
CPUs to SIMD and GPGPU. This bring with it, however, a need
to program this hardware in a programmer-friendly manner. Tra-
ditionally, managed languages like Java have struggled to take ad-
vantage of data-parallel hardware, but projects like Aparapi provide
a programming model that lets the programmer easily express the
parallelism within their code, while still programming in a high-
level language.

This work takes advantage of this programmer-specified paral-
lelism to perform source-level auto-vectorization, an optimization
that is rarely considered in Java compilation. This is done using a
source-to-source auto-vectorization transformation on the Aparapi
Java program and a JNI vector library that is pre-compiled to take
advantage of available SIMD instructions. This replaces the exist-
ing Aparapi fallback path, for when no OpenCL device exists or if
that device has insufficient memory for the program.

We show that for all ten benchmarks tested the auto-vectori-
zation tool produced an implementation that was able to beat the
default Aparapi fallback path by a factor of 4.56x or 3.24x on
average for a desktop and a server system respectively. In addition
it was found that this improved fallback path even outperformed
the GPU implementation for six of the ten benchmarks.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Languages, Performance

Keywords Auto-Vectorization, Aparapi, Java, GPGPU, OpenCL,
SIMD, Parallel

1. Introduction
As individual cores on a processor have reached their clock fre-
quency limits, chip makers and programmers have had to turn
to parallelism to find performance improvements. These paral-
lel enhancements, however, require programmers and toolchains
to support programming across multiple cores, to exploit single-
instruction multiple-data (SIMD) or vector instructions, or even
to go as far as using hundreds of cores in massively data-parallel
general-purpose GPU (GPGPU) architectures.
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1.1 Language Support for Data Parallel Computations
Neither expecting the programmer to manually specify how to use
available parallelism, nor expecting the toolchain to automatically
extract parallelism from serial code has been successful. Modern
parallel architectures are most commonly exploited by using par-
allel programming languages or language extensions. Multi-core
parallelism can be programmed through high-level parallel exten-
sions such as OpenMP, Intel Threading Building Blocks or Cilk.
SIMD/vector instructions can be automatically exploited by auto-
vectorizing compilers with no programmer intervention, but ac-
cessing greater levels of data-parallelism on GPGPU architectures
currently requires the programmer to use low-level parallel pro-
gramming models such as OpenCL [8] or CUDA [11].

OpenCL and CUDA enable a programmer to offload parallel
calculations to a GPGPU, but require complex, time-consuming
and error-prone programming techniques. Therefore these lan-
guages have seen limited acceptance outside the realm of high
performance computing. Much of modern programming happens
using managed languages such as Java or C#, there has been recent
work abstracting away the complexity of GPGPU programming by
by extending these managed languages. For example, Aparapi [2]
and Rootbeer [17] both bring GPGPU programming to the Java
language and Habanero-Java [6] extends the Java language with
parallel constructs.

SIMD performance enhancements have been easier for most
programmers to take advantage of. Many compilers have adopted
SIMD instructions in their normal optimization process. Compil-
ers for natively compiled languages, such as C and C++, already
utilize them as part of their standard optimizations. Managed lan-
guages, however, generally do not exploit these instructions except
in the most minimal ways. Both the runtime JIT-compiled nature
of these languages and the high-level structure of programs writ-
ten in them have meant that auto-vectorization optimizations have
not been implemented. The optimizations are expensive to perform,
making them unfriendly in a JIT-compiled scenario. Also, they only
successfully apply to naturally data-parallel programs, so they of-
ten failed to provide any benefit for high-level programs that are
heavily abstracted from the underlying architecture.

This work, however, takes Java code that has been written to the
Aparapi API and exploits this programmer provided parallel struc-
ture at the source-level to successfully exploit SIMD instructions
without JIT modification.

1.2 Aparapi
Aparapi’s (“A PARallel API”) API [2] was developed as a way to
express parallel sections of code in Java so that they can be run on
any OpenCL capable device. This extends Java’s write-once run-
anywhere model to include any OpenCL capable hardware.

Aparapi is programmed through the use of a kernel method that
will be instantiated thousands of times in parallel. This kernel can



be inline with the rest of the source code, it just has to meet the
constraints of the Aparapi API. At runtime the Aparapi library
checks to see if an OpenCL device is available to run the kernel.
If there is no such device then Aparapi falls back to running the
kernel in parallel using a pool of Java threads.

1.3 Contributions
This work brings the data parallel performance enhancements of
SIMD instructions to Java through a source-level auto-vectorizer
and a simple vector library. To handle the automatic utilization
of the vector library, this work presents an auto-vectorizer that
works with the high-level Java Aparapi API. Aparapi brings the
performance benefits of massively parallel GPU hardware to the
Java programmer without forcing them to learn to write low-level
code. The Aparapi extension provides the programmer with a high
level API that enables them to offload data parallel calculations to
an OpenCL device. By using the Aparapi API, the programmer has
already stated that the calculations are independent of each other so
that they may run on a GPU. The auto-vectorizer takes advantage
of this knowledge of independence to aid it in determine sections
of code that are safe to vectorize, and to correctly utilize the vector
library without any additional effort from the programmer.

As Java JIT compilers cannot reliably take advantage of the per-
formance of SIMD instructions, this work presents a C++ library
that is accessed by Java through JNI calls to perform SIMD calcula-
tions. The auto-vectorization tool uses this library to enable access
to SIMD hardware without JIT-compiler support.

This work is not only evaluated against the vanilla Aparapi Java
Thread Pool and OpenCL implementations, but against a partial
implementation of our technique that bundles parallel work to-
gether but without vectorization. We find that while performing this
bundling improves performance over the Java Thread Pool, the ad-
dition of vectorization makes our technique competitive with the
OpenCL implementation running on a GPU for many benchmarks.
Even when auto-vectorization is not able to out-perform a GPU,
our technique always has better performance than the Java Thread
Pool fallback path.

2. Related Work
Although previous work has not looked at the intersection of
Java auto-vectorization and using high-level languages to program
GPGPUs, both of these topics have been investigated separately.

2.1 JIT Auto-vectorization
Nuzman et al. [10] have previously described an effective ap-
proach to introducing auto-vectorization into JIT compilers through
a split offline/online approach. Like this work, they use GCC’s
auto-vectorizer offline. They, however, produce vector bytecode in-
structions that will be translated into SIMD instructions by the on-
line JIT component. This means that the bytecode can be run on
newer JITs and exploit instructions that did not exist at the time
of compilation, but the JIT must be updated for every new ar-
chitecture. In contrast, our approach only requires recompiling a
C++ library to target a new architecture, but does not provide a
mechanism for targeting future hardware within an existing binary.
The main advantage of our approach over that of Nuzman et al. is
that we are specifically exploiting the parallel structure of Aparapi,
rather than being limited to traditional loop-based vectorization.

Nuzman et al. [10] targeted C code running on the Mono CLR,
however there has been other works that directly target auto-
vectorization in Java. Shobaky et al. [3] target subword-SIMD
functionality within Java. They do not use SIMD instructions like
those in the SSE or AVX instruction set, but instead uses standard
integer operations on short and byte data types to achieve SIMD

functionality. This work is integrated into the JVM and can achieve
speedups of 1.6x when combining 2 short data types, and 2.5x
speedup when combining 4 byte data types.

Nie et al. [9] avoid the small data size limitations of sub-word
SIMD. They create an automatic vectorizer that is built into the
Harmony JVM’s JIT compiler: Jitrino. The auto-vectorizer is able
to vectorize Java loops of any size, unlike the previous work’s [3]
single instruction loop limitation. The work also supports a much
larger selection of SSE and AVX instructions to bring true vector-
ization to Java. The work sees speedups of 2x on sub-benchmarks
within SPECjvm2008 and even. The work achieves a maximum
1.55x and 2.07x speedup on a desktop implementation and a maxi-
mum 1.45x and 2.0x speedup on a server implementation, but these
speedups reduce to drastically as the number of threads and data in-
put size increases. This means that a multi-threaded approach can
often provide a larger performance gain than a single-thread SIMD
approach.

2.1.1 High-level GPGPU Languages
Programming GPGPUs often involves complex low-level data
transfers and code complexity that the average programmer does
not wish to deal with. In order to make general purpose GPU pro-
gramming more accessible, extensions to current languages and
entirely new domain specific languages and have been created.

Chestnut [19] and Harlan [7] are both new domain specific
languages created just for this reason. They seek to abstract all of
the complexities associated with GPGPU computing away from the
programmer and provide a simple to use parallel API that allows
programmers to write high-level parallel code that can be run across
a variety of different parallel architectures.

However, since new domain specific languages require a pro-
grammer to port existing code to a new language, this work fo-
cuses on extensions to Java that allow parallel programming mod-
els to be implemented inside existing code allowing for minimal
code modification. Aparapi [2] and Rootbeer [17] are both exten-
sions to the Java programming model that are designed to provide
the programmer with a simple API to declare certain sections of
their code parallel. The extension runtime then takes these sections
of code and compiles them down to low level code that can run on a
GPU, Aparapi uses OpenCL and Rootbeer uses CUDA. Habanero-
Java [6] provides a deeper level of expressibility by providing lan-
guage extensions to support parallelism and to safely preserve Java
exception semantics when the underlying GPGPU hardware fol-
lows a different execution model.

Because Habanero-Java syntactically and semantically extends
the language it is more difficult to integrate its use into an exist-
ing project, Aparapi and Rootbeer merely provide a new API. Of
these last two, Aparapi’s use of OpenCL means that it can run on
any OpenCL device, including CPUs and most GPGPUs, whereas
Rootbeer’s use of CUDA means that it can only run on NVIDIA
GPUs. Therefore Aparapi was used in this work, as it provides the
most heterogeneous flexibility.

3. Vectorization
Vector instructions enable a processor to perform element-wise
operations on two multi-element operands either stored in memory
or specific vector registers that can be loaded from memory with
a single instruction. Therefore from one load, execute, and store
multiple calculations can be performed. For example, Figure 1
illustrates that while a normal add operation can only compute the
result of one pair of operands, a vector instruction can compute
the sum of multiple, in this case four, pairs of operands in a single
operation.



Figure 1. SIMD example.

3.1 Vector Library
Java is still at the early stages of supporting SIMD instructions. Al-
though the Hotspot JIT compiler has the capability to vectorize ex-
tremely simple loops [14], in practice anything more complicated
than a sequential loop containing an array addition is not vector-
ized. Any time threads were involved or the loop became more
complicated the Hotspot JIT compiled to non SIMD instructions.
Because of this, a special vector library was needed in order to en-
able SIMD operations in Java.

3.1.1 Vector Library Implementation
As a first step to bringing SIMD instruction support to Java this
work tried a library of simple vectorizable functions written in Java
to see if by separating the functions into single line, independent
loops the library could get Java’s JIT compiler to compile the func-
tions using SIMD instructions. This proved to be unsuccessful as
analysis of the JIT compiler output as well as performance num-
bers indicated that the JIT was still not vectorizing these functions.
Therefore an external library was needed. The next attempt was
to create a C++ library, called through Java’s JNI interface, which
contained all of the basic SIMD functions. This library would then
read in the arrays to be processed, perform the correct SIMD op-
erations, and return the results back to Java. To perform the SIMD
calculation portion of this task each vector operation was written
as a basic C++ loop compiled to SIMD instructions through GCC’s
auto-vectorization compiler optimizations. The GCC compilation
handles odd sized problems by vectorizing the loop iterations that
fit into vectors and then individually calculating the remaining el-
ements. Writing the library in C++ obviously limits the natural
portability of Java, but by using generic C++ rather than special-
ized vector intrinsics this library can be compiled for any architec-
ture with a C++ compiler.

Due to JNI data transfer overheads, the vector library uti-
lizes a buffer to transfer all of the data to and from the vec-
tor library. On the C++ side the buffer is loaded through the
GetDirectBufferAddress() command and then can be treated
as a pointer to an array. Once the C++ library has the address to
the buffer all it needs is the offset to any variables involved in the
calculation and the size of the vector operation to be performed.
After the vector library has determined where the operand arrays
are located in the buffer and set their pointers, the operands can be
treated as normal arrays. An example of this is provided in Fig-
ure 3. In this example three arrays are being accessed through the
buffer: two operand arrays and one destination array. From there
the GCC optimized assembly code takes care of determining how
many iterations of the loop can be vectorized and how many iter-
ations need to be calculated individually. Since Java and C++ are
accessing the same area in main memory there is no need to return
any results. They are already in the destination portion of the buffer
waiting for Java to use.

Functions like the one in Figure 3 were written for all possible
vector operations needed: add, subtract, multiply, divide, modulus,
and, or, square, square root, cos, sin, max, min, abs, log, and exp. In
addition, each operation had functions that could handle int, float,
double, short or long inputs and any combination of constants and
arrays within the input. For example there are separate functions
that would handle a[] - b and a - b[] and a[] - b[] for each

data type: int, float, double, short, and long. The combina-
tion of all of these functions and their associated header file created
the C++ side of the vector library.

3.1.2 Java Math Library
In implementing vector library functions equivalent to Java Math
library functions, an interesting behavior was found. The vector in-
structions outperformed their Java Math library functions by far
more than possible simply due to SIMD performance gains. Af-
ter further investigation it was found that not all Java Math li-
brary functions take advantage of the hardware equivalents built
into many processors. Instead many of them call a software equiv-
alent in java.lang.StrictMath which implements the function
in software to ensure accuracy of the result [15]. This allows the
vector library equivalent to gain an additional performance gain re-
sulting from utilizing the available hardware implementations of
these functions. To ensure that the same accuracy is achieved each
benchmark was checked for valid results upon completion and all
of the vectorized implementations yielded the same results as their
Java Math equivalents.

3.1.3 NIO ByteBuffer
The optimal way to interact with the newly created vector library
was through the Java New I/O (NIO) API. The NIO API was devel-
oped to allow Java to interact with features that are I/O intensive in
J2SE 1.4 [16]. These APIs are meant to provide access to low-level
software that can perform the most efficient function implementa-
tions for a specific set of hardware. Data transfers through the NIO
interface are performed through buffers. These buffers are a con-
tiguous memory that is visible to both Java and non-Java code. By
having access to the same memory from outside Java, it eliminates
the need for additional expensive data copying [16].

In the vector library implementation, all of the variables are
passed through the use of a single java.nio.ByteBuffer. Fig-
ure 2 illustrates the layout of a typical buffer in a vectorized Aparapi
implementation. Variables declared outside the kernel are only
stored in the buffer once as they are to be consistent among all
kernels. Variables declared within the kernel, however, are kernel
dependent and need to be kept separately. In the vector implementa-
tion there is one kernel per thread and each vector kernel executes
the code equivalent to the number of kernels represented by the
vectorization length. Therefore to ensure each kernel gets its own
set of internal variables within the buffer, each thread gets its own
set of internal variable arrays. Each array then contains the internal
variable for each of the original replaced by that specific vector im-
plementation. For example, if Figure 2 represents the buffer of an
8 threaded vector implementation of 1024 Aparapi kernels, Thread
1 Internal Variables would contain arrays corresponding to internal
variables for kernels 0-127, Thread 2 Internal Variables would con-
tain arrays corresponding to internal variables for kernels 128-255,
and so on.

Figure 2. Buffer layout.

Packing all data into a single buffer minimizes NIO overhead.
When passing the arguments to the vector library function in sepa-
rate buffers there is a small overhead for each GetDirectBuffer-
Address() call. However, if all of the arguments are in a single
buffer this overhead is only incurred once and offsetting pointers to
different start places in the buffer takes a mininal amount of time
compared to the GetDirectBufferAddress() load.



/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Name : addXIn tBuf f
∗ I n p u t s : JNIenv ∗ env , and j o b j e c t o b j a r e h a n d l e d by Java and r e q u i r e d f o r JNI F u n c t i o n s
∗ I n p u t s : a S t a r t ( o f f s e t o f t h e f i r s t i n p u t a r r a y from t h e s t a r t o f t h e b u f f e r )
∗ I n p u t s : b S t a r t ( o f f s e t o f t h e second i n p u t a r r a y from t h e s t a r t o f t h e b u f f e r )
∗ I n p u t s : c S t a r t ( o f f s e t o f t h e o u t p u t a r r a y from t h e s t a r t o f t h e b u f f e r )
∗ I n p u t s : s i z e ( number o f e l e m e n t s t o be summed )
∗ Re tu rn : none ( r e s u l t i s s t o r e d i n t h e a r r a y a t c S t a r t )
∗ D e s c r i p t i o n : C[ 0 , 1 , . . . , s i z e ] = A[ 0 , 1 , . . . , s i z e ] + B[ 0 , 1 , . . . , s i z e ]
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /
JNI JAVA ( void , V e c t o r S u b s t i t u t i o n s , addXIn tBuf f )
( JNIEnv ∗ env , j o b j e c t obj , j o b j e c t bu f f , j i n t a S t a r t , j i n t b S t a r t , j i n t c S t a r t , j i n t s i z e ) {

j i n t ∗ a = ( j i n t ∗ ) env−>G e t D i r e c t B u f f e r A d d r e s s ( b u f f ) ;
j i n t ∗ b = &a [ b S t a r t ] ;
j i n t ∗ c = &a [ c S t a r t ] ;

a+= a S t a r t ;

j i n t i ;
f o r ( i =0 ; i<s i z e ; i ++) {

c [ i ] = a [ i ] + b [ i ] ;
}

r e t u r n ;
}

Figure 3. Vector library: C++ addXIntBuff function.

Interacting with these NIO buffers on the Java side is done
through a series of basic commands. First the buffer must be al-
located to the correct size. Since the single buffer will contain all
of the data transferred back and forth throughout the entire pro-
gram, this buffer must be large enough to hold all of the variables
accessed within the kernel. After the buffer is allocated the byte or-
der must be set to ensure the data is written and read in the same
order. In the case of this research, the low level library used a little
endian byte order.

Once the buffer is created data can be easily written or read
through the put and get functions; both of which have implementa-
tions for float, int, double, short and long. To access a spe-
cific variable in the vectorized Aparapi code, its buffer index must
be calculated. This is done by taking the starting point of the vari-
able’s array plus the variable’s array index. This value is then multi-
plied by the number of bytes used to store a variable of that type: 2
for short, 4 for float and int, and 8 for double and long. An example
of each type of buffer interaction from the Java side can be seen in
Figure 4.

Using NIO, the vector library spent 98% of the time for a 1024
x 1024 matrix multiply in the computational phase and only 2% in
overhead through the JNI call and data transfer. This enables the
SIMD performance gains to be transferred to the Java code without
being offset by overhead costs.

Any Java function that wants to use a vector function simply
needs to include the VectorSubstitutions class in the include
portion of the Java file, ensure that it is using a NIO buffer to store
any data that needs to be used by a vector function in the kernel and
then call the appropriate vector functions in the vector kernel.

4. Auto-Vectorization
Auto-vectorization is the process of converting code with oper-
ations that act on a single pair of operands at a time and con-
verting those into vector implementations that operate on multiple
operands at a time. Traditionally this involves determining whether

sections of an innermost loop can be run in parallel and therefore
vectorized [1].

In this work each Aparapi kernel is already determined to be
independent and is treated as the innermost independent loop.
Therefore removing the need for complicated dependency checks
and allowing statements to be vectorized across kernels, reducing
the number of kernels that the processor needs to run. The auto-
vectorization tool takes advantage of this fact to implement the
vector library described in Section 3.1.

4.1 Auto-Vectorization Tool
This work presents and employs the use of an auto-vectorization
tool that reads in Aparapi Java source code as an input and pro-
duces correctly vectorized Java source code using the vector library
described above in Section 3.1 as an output. This allows for the end
user to achieve the performance benefits of using the vectorization
library without spending any effort on manual code modifications.

In order to parse and read the Java source code, this work takes
advantage of the Java Parser toolkit [5]. This toolkit includes a basic
API written in Java that allows the user to read in a Java source
file and break it down into an Abstract Syntax Tree (AST) that is
easy to work with. From there the AST can be modified as needed
in order to add the appropriate vectorization instructions and then
reassembled back into a Java source code file.

This work uses the Java Parser to create a tool that can read
in Aparapi Java source code, detect sections of the code that can
be vectorized with the vectorization library, and generate properly
vectorized source code as a result. This includes adding the extra
include statements, generating the ByteBuffer in which data will
be stored and transferred between Java and C, correctly populating
the ByteBuffer before the kernel is executed, converting kernel
instructions into their vector library counter-parts, and reading any
necessary variables out of the ByteBuffer after the kernel execu-
tion has completed.

In order to complete this task the auto-vectorizer makes several
passes over the AST. On the first pass through the AST the auto-



. . .
i n t b u f f e r S i z e = . . .
f i n a l B y t e B u f f e r b u f f e r = B y t e B u f f e r . a l l o c a t e D i r e c t ( b u f f e r S i z e ) ;
b u f f e r . o r d e r ( By teOrder . LITTLE ENDIAN ) ;
. . .
b u f f e r . p u t I n t ( ( a B u f f e r S t a r t + e l e m e n t I n d e x )∗ s i z e O f I n t , a [ e l e m e n t I n d e x ] ) ;
. . .
a [ e l e m e n t I n d e x ] = b u f f e r . g e t I n t ( ( a B u f f e r S t a r t + e l e m e n t I n d e x )∗ s i z e O f I n t ) ;
. . .

Figure 4. Code snippet illustrating the use of the ByteBuffer.

vectorizer scans the code and searches for any kernels that are
executed in the code as well as the size of the kernel to be executed.
This is to make sure that only code executed inside of a valid
kernel is vectorized as only data between kernels is proven to be
completely independent and therefore vectorizable.

4.2 Vectorization Dimensions
Knowing the number of kernels executed also allows the auto-
vectorizer to determine the best vector size for the code. For two
and three dimensional problems this is simple. The auto-vectorizer
simply vectorizes along the last dimension. For example, a two
dimensional image manipulation source code that would normally
execute on a two dimensional range of (x, y) would instead execute
on a one dimensional range of x and be vectorized along the second
dimension y.

The last dimension is chosen because multi-dimensional pro-
grams are more likely to access array elements sequentially in the
last dimension and any operation containing non-sequential ac-
cesses cannot be vectorized. When the auto-vectorizer detects oper-
ations on arrays it will only vectorize operations that act on sequen-
tial array elements for sequential kernels. For example the sample
code in Figure 5, is vectorizable because the vectorization library
can load sequential elements into registers with only one instruc-
tion. However, the sample code in Figure 6 is not vectorizable be-
cause the b array is accessing non-sequential elements. Since the
AST breaks each equation down to its smallest element, the auto-
vectorizer is able to detect these differences. It looks at the index of
each array access in a possible vector instruction and checks for the
presence of one and only one variable that varies with the global id
in the vectorizable dimension and that the only operations on that
variable are additions and subtractions.

i n t x = g e t G l o b a l I d ( 0 ) ;
i n t y = g e t G l o b a l I d ( 1 ) ;
a [ x+y ] = b [ wid th ∗x+y ] + c [ y ] ;

Figure 5. An example vectorizable operation.

i n t x = g e t G l o b a l I d ( 0 ) ;
i n t y = g e t G l o b a l I d ( 1 ) ;
a [ x∗y ] = b [ wid th ∗y+x ] + c [ x+y ] ;

Figure 6. An example unvectorizable operation.

For a single dimensional problem, the task of determining the
vector size is not as straightforward. The tool allows for the pro-
grammer to enter a vector size manually if there is a specific de-
sired vectorization length, but it can also determine a good vector
size on its own. From analysis of several benchmarks, described
further in section 5, it was determined that optimal performance

was achieved with the largest possible vector size that still evenly
utilized all available threads. This is due to the fact that any cache
performance penalty incurred by using large vector sizes is smaller
than the overhead incurred by the additional JNI calls of using
smaller vector sizes. For example, a program with 16384 kernels
would be best mapped on a processor with 8 cores by running 8
vector kernels each with a vector length of 2048.

4.3 Restructure Loops
Once the auto-vectorizer knows the boundaries of the vectorizable
regions and the vector size, it then is able to reduce the number
of kernels to be executed by the vector size. This is accomplished
by either replacing any Range creations associated with the kernel
being vectorized with a Range of the original size divided by the
vector size or by replacing the arguments of the kernel’s execute
call with arguments reduced by vector size.

In situations where the problem size is not a multiple of the
vector size, individual kernels have their vector size increased to
accommodate the remainder. For example, if there were 70 kernels
to be divided among 8 vector kernels, the vector size of the first
6 vector kernels would be 9 and the last 2 vector kernels would
have a vector size of 8. The C++ vector library will then vectorize
the vector kernel operations it can and then perform the remaining
operations individually.

When reducing the number of kernels to be executed, the
code inside the kernel is placed inside a for loop that loops from
zero to the vector size and any call to getGlobalId() is re-
placed with getGlobalId() * vector size + vector loop
iteration as illustrated in Figure 7. This ensures the resultant
code remains still yields the same end results.

For some benchmarks this alone is enough to generate some
speedup over kernels executed in the Java Thread Pool (JTP).
When Aparapi code is written, the main goal is to run on a GPU
and therefore the having more parallel kernels running at a time
generally results in a faster run time. However, a CPU cannot run
nearly as many concurrent threads as a GPU and is often limited
to numbers around 4, 8 or 16 rather than the thousands than can be
run on GPUs. Because of this, having more kernels than available
threads can actually hinder performance as each kernel created
has some non-negligible overhead. When kernels are condensed
and run as one kernel per thread with loops executing multiple
kernels worth of code, the JTP still can achieve its maximum
parallelization, without incurring the additional startup overhead
for each of the combined kernels.

4.4 Vectorization
If the auto-vectorizer detects that a line of code inside the loop can
be vectorized, that line is split off into its own loop to later be vec-
torized. This is illustrated in Figure 8. If the vectorizable instruction
uses array variables, the auto-vectorization tool checks to see that
the array is accessed sequentially for sequential kernels. There are
three possible outcomes of this check. First if it is sequentially ac-



@Override p u b l i c vo id run ( ) {
f o r ( i n t v e c L o o p I t e r a t o r =0; v e c L o o p I t e r a t o r <v e c S i z e ; v e c L o o p I t e r a t o r ++) {

i n t g i d = g e t G l o b a l I d ( ) ∗ v e c S i z e + v e c L o o p I t e r a t o r ;
/∗ normal k e r n e l code ∗ /

}
}

Figure 7. Aparapi kernel rewritten to perform vecSize operations.

@Override p u b l i c vo id run ( ) {
f o r ( i n t v e c L o o p I t e r a t o r =0; v e c L o o p I t e r a t o r <v e c S i z e ; v e c L o o p I t e r a t o r ++) {

i n t g i d = g e t G l o b a l I d ( ) ∗ v e c S i z e + v e c L o o p I t e r a t o r ;
/∗ i n i t i a l k e r n e l code ∗ /

}

f o r ( i n t v e c L o o p I t e r a t o r =0; v e c L o o p I t e r a t o r <v e c S i z e ; v e c L o o p I t e r a t o r ++) {
/∗ v e c t o r i z a b l e o p e r a t i o n ∗ /

}

f o r ( i n t v e c L o o p I t e r a t o r =0; v e c L o o p I t e r a t o r <v e c S i z e ; v e c L o o p I t e r a t o r ++) {
/∗ r e m a i n i n g k e r n e l code ∗ /

}
}

Figure 8. Aparapi kernel from Figure 7 rewritten to split each operation into a separate kernel.

@Override p u b l i c vo id run ( ) {
f o r ( i n t v e c L o o p I t e r a t o r =0; v e c L o o p I t e r a t o r <v e c S i z e ; v e c L o o p I t e r a t o r ++) {

i n t g i d = g e t G l o b a l I d ( ) ∗ v e c S i z e + v e c L o o p I t e r a t o r ;
/∗ normal k e r n e l code ∗ /

}

/∗ v e c t o r i z a b l e o p e r a t i o n ∗ /
sub . v e c t o r i z a b l e O p e r a t i o n ( b u f f e r , v a r i a b l e i n p u t s , v e c S i z e ) ;

f o r ( i n t v e c L o o p I t e r a t o r =0; v e c L o o p I t e r a t o r <v e c S i z e ; v e c L o o p I t e r a t o r ++) {
/∗ r e m a i n i n g k e r n e l code ∗ /

}
}

Figure 9. Aparapi kernel from Figure 8 rewritten to perform vectorizable operations using the vector library.

cessed, the array is marked as a buffer variable. Next, if the array
accesses are independent of global id then the value is treated as
a constant. Finally, if the array accesses varies with global id, but
not in a sequential way then the calculation is determined to not be
vectorizable and left in the original, unseparated loop form.

Another possibility for a vectorizable instruction is that is uses
primitive variables that vary within the loop. When a primitive
variable is detected in a possibly vectorizable instruction, the tool
first checks to see if the variable varies from kernel to kernel. If
the variable varies, the auto-vectorizer marks it as a buffer variable
and sets aside enough space in the buffer for the variable times the
vector size times the number of threads that can be active at a time,
see Figure 2. This ensures that the variable is properly stored for
each instance in the vectorized operation as well as that concurrent
threads do not overwrite each other’s variables.

The auto-vectorizer also keeps track of when this process sepa-
rates a non-buffer variable from the loop it was declared in. These
variables are also added to the list of variables that must be stored

into the ByteBuffer so that their value can be preserved through-
out the kernel execution for when it is needed later.

Once the source code is split into the correct loops, see example
in Figure 8, the auto-vectorization tool iterates over all the created
loops and replaces any references to a buffer variable with code that
reads associated variable from the ByteBuffer.

Once the code is properly setup in loops and all of the buffer
variables have correctly been replaced with the proper buffer ac-
cesses, the auto-vectorization tool enters the actual vectorization
stage. In this stage the auto-vectorizer picks out all of the for loops
within executed kernels that have a single instruction in their body.
This statement is then o checked to see if it is vectorizable. If it is
then the entire loop is replaced with a call to the correct JNI vector
method. Otherwise the loop is left alone, Figure 9 continues the ex-
ample from Figure 8, showing the vectorizable loop replaced with
a call to the JNI vector library.

To determine if the statement is vectorizable the auto-vectoriza-
tion tool breaks down the statement to determine if a corresponding
instruction exists in the vector library. If the statement is a binary
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Figure 10. Desktop system results. Speedup compared to initial Java Thread Pool implementation.

expression (+, -, *, /, &, |, etc), then the tool checks to see that the
JNI vector library contains a function to not only handle that binary
expression, but also with the correct variables (constant + constant,
constant + buffer variable, buffer variable + buffer variable, etc).
Any array variables are also checked to ensure that their indices
are sequentially accessed by sequential kernels. If a corresponding
vector instruction exist then this segment of the tool passes back
the correct method call with the correct arguments including the
variable name for constants and the correct buffer start position for
buffer variables. Otherwise it leaves the code inside of its original
loop to be executed as regular Java code.

4.5 Vectorizing Math Library Calls
The auto-vectorizer also has the option to check for calls to the
Java Math library and vectorize them. If enabled the auto-vectorizer
checks for these calls within a vector loop to determine if the Math
call and corresponding argument types have a matching function in
the JNI vectorization library. If so, then the loop is replaced with
the correct JNI function.

However, since the hardware equivalent of some of the Java
Math functions do not exactly match the implementation in the Java
Math library [15], these vectorizations can be disabled in the auto-
vectorizer. All of the benchmarks run in this paper had verification
steps to ensure that the correct results were achieved with vector-
ization, and all of the benchmarks, including those with Java Math
functions, passed with the Java Math functions vectorized.

4.6 Buffer Creation
Once all of the loops have been traversed the tool checks to see
if any vectorizations were made. If so, the tool traverses the code
and populates the buffer before the kernel execution with any buffer
variables that are set outside of the kernel but used within a vector
instruction. This method also keeps track of where the first instance
of one of the buffer variables populating the buffer so that the tool
can create the buffer before this point. If no buffer variables are
instantiated before the kernel is executed the auto-vectorizer places
the buffer creation code just before the kernel execute call.

The auto-vectorization tool then loops through the source code
after the kernel execution call to check for anywhere where a
buffer variable is read from and replaces this variable access with a
buffer.get corresponding to the variable accessed. In this pass, the
auto-vectorizer also adds imports to the top of the Java source code
file for the vector library and for ByteBuffer.

At this point the auto-vectorizer has completed the vectorization
process and returns the vectorized Java source code. The vectorized
Java source code should correctly compile and run just as the
original source code would have been. Depending on the project
setup, the user may have to link the pre-compiled shared object
(.so) vector library file.

5. Evaluation
In this section the performance of the vectorization library is com-
pared against the Aparapi Java thread pool, looped Aparapi Java
thread pool, Aparapi OpenCL on the GPU, and in one case a library
written in Java to try to enable the Oracle Hotspot JIT compiler to
vectorize instructions.

Java thread pool (JTP)
Stock Aparapi implementation using a Java thread pool, all
speedup performance numbers are normalized to JTP.

Looped kernels on the Java thread pool (LOOP)
Version of the benchmark produced by the auto-vectorization
tool but with no vectorization performed. All vectorizable op-
erations, however, are bundled into their own Java loop.

C++ Library (JNI)
Version of the benchmark with vectorizable work-items re-
placed with calls to an unvectorized C++ library via JNI.

Vectorization library (VEC)
Fully auto-vectorized benchmark produced by the presented
technique, with calls to the pre-vectorized C++ library via JNI.

Graphics Card (GPU)
Stock Aparapi benchmark ran on the GPU via OpenCL.

5.1 Experimental Setup
All of the experiments were run on a desktop system and a server
system. The desktop system contains an 8-core AMD FX 8350 and
a GeForce GT 610 with 48 CUDA cores. The server system consists
of 4 Opteron 6376 16-core processors for a total of 64 CPU cores.
The server also contained an NVIDIA GeForce GTX Titan GPU
with a total of 2688 parallel CUDA cores. All experiments used the
maximum available parallelism per architecture.

5.2 System Results
Figures 10 and 11 show the full set of results for the desktop and
server systems respectively. The LOOP, JNI and VEC results are
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Figure 11. Server system results. Speedup compared to initial Java Thread Pool implementation.

presented as a stacked bar as each stage builds on the performance
of the last. In Figure 10 it can be see that LOOP alone gives a
reasonable performance improvement of 1.46x on average over
Aparapi’s Java thread pool (JTP). This is largely due to having to
create far fewer kernel objects within Aparapi as each object exe-
cutes many kernel instances. This does introduce the possibility of
extending execution time for programs with highly uneven kernel
execution time, as one thread may take longer to complete than the
others. However, this program structure would also perform poorly
with OpenCL and does not result in slow-downs for any of our
benchmarks. The use of the non-vectorized C++ library (JNI) ex-
tends this speedup to 3.08x on average for the desktop system, due
to reducing JIT overhead. Finally, the use of the vectorized library
(VEC) brings the final average speedup to 4.56x for the desktop
system. The step from JNI to VEC is entirely due to the use of
native SIMD instructions.

Figure 11 shows the same trends on the server system for LOOP
and JNI, but not for VEC. The step from JNI to VEC only takes the
average speedup from 3.01x to 3.24x. This is because on the 64-
core system the JIT-savings that the JNI implementation provides
are comparatively larger than on the 8-core desktop as the higher
core count means that the system can complete a larger portion of
the benchmark before the baseline JTP implementation can com-
plete its JIT compilation. This, combined with less work available
per-core, means that the vectorized implementation can only pro-
vide a modest improvement for these benchmarks.

5.3 Benchmarks
Since Aparapi is still a work in progress, there are currently few
benchmarks written using it. Aparapi provides a few sample pro-
grams: Matrix Multiply, Blackscholes, Mouse Tracker, Mandel,
and Life. To supplement this extra programs were added, these are
described and evaluated below.

5.3.1 VecAdd
VecAdd is a simple vector addition calculation. It takes data stored
in two single dimensional arrays, adds the corresponding elements,
and stores the result in a third single dimensional array. This was
a very simple micro-benchmark meant to isolate the vector oper-
ations to get a direct comparison of the vector operations against
their non-vectorized Aparapi counterparts. This benchmark per-
forms very poorly on the GPU as the trivial O(n) computation can

be completed on the CPU in less time than it takes to transfer the
data to and from the GPU.

The simple nature of VecAdd makes it a natural choice to ex-
plore the vectorizer more deeply, this is done in Figures 12 and 13.
Figure 12 shows the performance of the CPU-based implementa-
tions on different data sizes. As can be seen in Figure 12(a), once
the vector library is able to overcome the JNI overhead costs it can
provide significant speedups. These speedups continue to grow un-
til a peak of a 14.6x speedup and for the desktop and a 4.8x speedup
for the server, then begin to decrease back down to 2x. Figure 12(b)
seeks to explain this peak behavior. It illustrates that while all three
CPU kernel implementations see improved performance on larger
data-sizes, the JTP implementation is slower to realize those ben-
efits due to JIT-compiler warm-up time. At a problem size of 214

elements performance of LOOP levels out until the JIT’ed version
is ready. Thus the vectorizer sees the largest speedups for medium
sized data-sets, but provides speedups on data-sizes as small as 29

elements and as large as 226.
Figure 13 investigates the effect of vectorization sizes and work-

item distribution sizes. Figure 13(a) varies the vectorization size
parameter, i.e. how many calculations should be performed by a
single call to the vectorization library. Larger sizes provide an ob-
vious gain through reducing JNI overhead, though beyond a certain
point no further gains can be made. A simple policy of choosing
the largest possible vectorization size will provide optimal perfor-
mance. Choosing a loop-size parameter, however, is not as simple.
This parameter controls how many Aparapi work-items are bundled
together into a single loop. Although small bundles do not provide
optimal performance due to thread-object creation overhead, large
bundles also do not provide optimal performance as they tend to
have poor temporal locality in the cache due to performing long
linear sequences of operations. It also increases the probability that
at the end of a kernel execution some threads will be idling waiting
on the last few threads to complete their large bundles. The peak
seen in figure 13(b) relates to L1 data cache size – the best per-
formance is found by maximally utilizing the data cache, but not
exceeding its capacity.

5.3.2 VecCos
VecCos is very similar to VecAdd, except instead of performing
an addition on two corresponding data entries and storing the data
in a third, VecCos performs a cos operation on each element of
an array and stores the result in a target array. This benchmark
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Figure 12. Performance of CPU-based implementations of Vector Add (VecAdd) over various problem sizes on desktop system.
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Figure 13. Effects of varying vectorization parameters for Vector Add (VecAdd) on various problem sizes for the desktop system.
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Figure 14. Comparison of various CPU-based implementations of edge-detect for several image sizes.

has the same compute to data-transfer ratio problem that caused
vector-add to perform poorly on the GPU, a result that is repeated
here. VecCos was benchmarked because it compares the speed of
hardware cosine operations against Java’s Math library which does
some of the calculations in software [15]. As with every other
benchmark the results of the vectorized code were compared with
the non-vectorized to ensure their validity. Although VEC provides
approximately the same speedups for the VecCos benchmark as
was achieved on VecAdd, the distribution of which stages provide
those gains is different. LOOP provides less of an advantage as it
is still using the Java Math library, JNI however provides a larger
speed-up by using the optimized implementation and finally VEC
improves on that result using SIMD instructions.

5.4 Matrix Multiply
Matrix multiply represents a benchmark that is ideal for a GPU as it
has a low data-transfer to compute ratio and is “embarrassingly par-
allel”. The server GPU was able provide an 80x speedup over JTP
for a 4096 x 4096 matrix multiplication, illustrating the true poten-
tial of GPGPU computing when the conditions are ideal. However,
for the 512x512 matrix multiply used in Figures 10 and 11 the GPU
in the desktop struggled to overcome the initial startup overhead,
with VEC outperforming the GPU. On the server system, however,
the massively parallel GPU significantly outperforms the vector-
ized CPU implementation.

5.4.1 Edge Detect
EdgeDetect was ported to Aparapi from an existing Java implemen-
tation [18]. Edge detect is another benchmark that benefits from
vectorization. Since the benchmark consists of completely vector-
izable operations, the vectorized kernel is able to achieve speedups
along all operations. The JNI and vectorized kernels are also able
to achieve an added cache performance benefit. Since they oper-
ate on several array elements at once they can capitalize on the
array being loaded into the cache and operate on sequential ele-
ments already loaded before they get flushed. The JTP and LOOP
implementations do not get this luxury. They access elements one
at a time causing sequential array elements to often be flushed from
cache by loading operands of sequential operations before they can
be accessed.

Figure 14 investigates the performance of edge-detect on sev-
eral different image sizes, but it also provides results for a pure-
Java version of the vectorization library. The hope was that by re-
structuring the code into obvious vector components the Hotspot
JIT-compiler’s limited vectorization capabilities [14] would be ef-

fective. Unfortunately this is not the case, inspecting the assembly
produced by the Hotspot JIT-compiler showed that it did not vector-
ize any of the restructured loops. Even worse, this restructuring re-
duces performance due to increased call overhead and limiting the
other optimizations that the JIT-performs. Using the pre-vectorized
C++/JNI library, however, is able to provide enough performance
to overcome these overheads.

5.4.2 Series Test
Series Test comes from the Java Grande Benchmarking Suite’s
multi-threaded benchmarks [4] and has been converted to Aparapi
Java for use in this work. The benchmark calculates the first
1,000,000 Fourier coefficients of the function f(x) = (x+ 1)x on
the interval (0,2) with each of the Fourier coefficients calculated in
a separate kernel. Within each kernel, the benchmark relies heavily
on the trigonometric functions to obtain the Fourier coefficients.

The heavy reliance on trigonometric functions enables the vec-
torized kernel to achieve speedups well beyond those from the
SIMD instructions alone. Just like in the VecCos micro-benchmark,
the Series Test benchmark benefits from the hardware implemen-
tations of the trigonometric functions. This can be seen in the JNI
results that provide considerable speed-ups even without vectoriza-
tion. With the addition of SIMD instructions VEC achieves a 13.4x
speedup on the desktop implementation and an 11.4x speedup on
the server system.

Due to the large size of the benchmark, the GPU is able to over-
come its overheads and surpass the non vectorized CPU kernel im-
plementations in terms of performance. However, due to the large
dependence on trigonometric functions the VEC kernel implemen-
tation is still able to beat the GPU implementation resulting in a
benchmark best run with the vector implementation.

5.5 Mouse Tracker
Mouse Tracker was another simple image manipulation benchmark
that came with the Aparapi source code. It was modified to not rely
on user-input, but to follow a pre-programmed sequence.

As this benchmark required little data transfer relative to the
number of parallel calculations performed, the GPU implementa-
tion came out on top with a speedups of 3.1x for the desktop sys-
tem and a minor speedup for the server system. As not all of the
internal instructions were vectorizable the vectorized implementa-
tion was not able to achieve this level of speedup, but was still able
to achieve a 1.4x speedup on the desktop system. This results in the
best implementation being the GPU and the fallback path being the
VEC implementation.



5.6 Black Scholes
The Black Scholes benchmark also came with Aparapi and is a
mathematical model of a financial market. While Black Scholes
is highly parallel, the GPU provides a slowdown. This is due to
the GPU’s initial startup overhead. On the desktop system the JTP
implementation is able to complete each iteration in around 70ms
and the initial overhead for the first iteration of the GPU imple-
mentation is around 780ms on the desktop implementation. On the
CPU side the VEC implementation was able to achieve almost a 2x
speedup on the desktop and almost a 1.5x speedup on the server
since almost all of the kernel operations were vectorizable calcu-
lations. This results in a benchmark with the best implementation
being the VEC kernel and a fallback path of the LOOP kernel.

5.7 Mandelbrot, Life, and Kmeans
Mandelbrot, Life, and Kmeans were not able to be vectorized
across kernels because either the majority of their code was within
kernel dependent control flow, or they accessed non-sequential el-
ements of arrays and therefore were unvectorizable across kernels.
Work-item bundling, i.e. “LOOP”, was still able to provide small
speedups however.

6. Conclusions
In this work, we presented an auto-vectorizer that allows Aparapi
Java programs to utilize SIMD instructions even though the Java
JIT compiler does not. This can be done with no extra effort from
the programmer. The speedups achieved by the tool are related
to the number of vectorizable options in the Aparapi kernel. For
kernels that are fully vectorizable, the auto-vectorizer tool is able
to achieve speedups of between 4x and 5x on the desktop system
and 1.5x to 2x on the server system. However, not all kernels are
completely vectorizable. Some kernels have control flow logic that
can reduce the number of vectorizable operations. The vectorizer
was still able to improve performance in these cases by bundling
together multiple work items.

In investigating the parameters of auto-vectorization we found
that although the performance of the Java thread pool increases on
longer-running workloads, due to amortizing JIT compiler over-
head, it never matches the performance of the JNI implementation.
We found that when distributing Aparapi work-items to threads the
size should be limited based on CPU cache size, but that each bun-
dle of work-items should be processed with the maximum vector-
size to reduce JNI overhead.

For initial future work the obvious path is to try to create a JIT-
compiler auto-vectorizer that is able to vectorize the pure-Java vec-
tor library used in Figure 14. A more interesting path, however, may
be to try to exploit the same Aparapi-aware knowledge used in this
paper directly within the JIT-compiler. API specific optimizations
are generally only provided for heavily used APIs, but the Graal
project [13] provides a path to insert this type of optimization.
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