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Abstract—Recently parallel architectures have entered
every area of computing, from multi-core processors to
massively parallel devices such as GPGPUs. These archi-
tectures have very different performance properties and
capabilities. Through experiments with the “13 Dwarfs”
and the NAS parallel benchmarks we show that different
kernels map more efficiently to different architectures. We
use these to motivate this position paper and we describe
our proposal for an automated compiler-based tool to map
kernels to the appropriate architecture. Our tool will allow
the programmer, or auto-parallelizer, to describe paral-
lelism using a mature model: OpenMP. This abstracts the
underlying hardware-specific parallelism model, allowing
the programmer to focus on describing the program, rather
than non-portable optimizations. Our proposed tool will
support an arbitrary number of architectures, but initially
we are focusing on x86, Tilera and GPGPUs. The tool
will be able to map code and transfer data to each of
these architectures automatically and insert all necessary
communication code. The mapping process will be based
on predictive performance models that balance computer
performance against data-transfer time.

I. INTRODUCTION

In 2006 Asanovic et. al. [1] described “13 dwarfs” that
represent key-problems in parallel computation. They
claimed that these are the 13 key areas that parallel
computation must support to allow performance scaling
and included some that are not inherently parallel.

We use a subset of these key problems to investigate
the characteristics of three parallel architectures: a Tilera
TILE-Gx36 (36 VLIW cores at 1GHz), an AMD Opteron
6376 (16 superscalar cores at 2.3Ghz) and a NVIDIA
GeForce GTX 560 Ti (448 cores at 1.5GHz). To have
benchmarks which can run on all three architectures
we started with a set of OpenCL implementations of
algorithms that map to the “13 dwarfs” [6], six of
which also have an OpenMP version available [3]. The
remainder we ported to OpenMP manually.

These benchmarks cover 10 of the 13 dwarfs – the
OpenCL benchmark suite only includes 11 and we
dropped the finite state machine dwarf as it is inherently
serial (and we are mostly interested in parallel architec-
tures). Regardless, the 10 dwarfs we show highlight a
number of different kernel characteristics.

Figure 1 shows the performance of these architectures
on each kernel. It can be seen that five map most effi-
ciently to x86, and five to the GPU, thus demonstrating
that different computational problems can be computed
most efficiently on different hardware.

Tilera can be seen to consistently under-perform in
comparison to the other two architectures, but it is actu-
ally far lower power. We do not present power numbers
in this paper as we do not yet have the infrastructure to
measure this, but the reference sheet “typical power” of
the entire Tilera board is about 50% that of the x86 CPU
alone, and about 25% that of the GPU board. This means
that as long as it runs in no more than half the time of
the x86 (e.g. astar in figure 1) it will use less power
to complete the task. This is especially important when
power efficiency is critical (such as data-center, HPC or
embedded systems contexts). The Tilera, however, can
also be more power hungry than an x86 processor if
it takes too long to complete a task (e.g. gem). So, as
with performance, different kernels can be mapped to
different architectures to optimize power usage.

Additionally, to ensure that these trends translate from
kernels to applications we also considered the NAS
Parallel Benchmarks [2]. We took the official OpenMP
implementation (on x86 and Tilera) and an OpenCL
implementation [17] for the GPU. The results of running
with dataset B, shown in figure 2, show that five are
fastest on the x86, and three are fastest on the GPU.

This motivates our belief that applications can see
increased performance if partitioned across multiple
heterogeneous parallel architectures, picking the ideal
architecture per-kernel.

II. MAPPING TOOL DESIGN

To target this heterogeneous partitioning problem we
propose a compiler-based “source-to-source” tool. This
will take an OpenMP program as input and produce a
partitioned “program” as output. The partitioned pro-
gram will in-fact be two or more tightly coupled pro-
grams targeted to different hardware. This partitioning
will follow an accelerator model where the program runs
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Fig. 1. The performance of each “dwarf” on different architectures, relative to a single-core x86 processor. These represent a collection of
GPU benchmarks, the GPU runs the original OpenCL code, the x86 and the Tilera run OpenMP versions. In all cases program start-up time is
excluded, so the time to compile the OpenCL kernels or create the OpenMP thread pool is not included.

on a host architecture, which can send work to other
architectures, as shown in figure 3.

At a high-level, the tool characterizes each function to
decide which architecture it would most closely map to.
Primarily it will focus on functions containing parallel
loops (marked by OpenMP pragmas), but these do not
necessarily have to be leaf nodes in the call graph –
partitioning an entire sub-graph is also considered. This
characterization will be used to decide how to partition
the call-graph in conjunction with expected data-transfer
requirements. Once the partition boundaries have been
decided the partitioned code will be separated out and
run-time code will be added to transfer control.

This run-time stub will have final control over where
to run each partition. As the exact data-transfer require-
ments can only be known at run-time, and may vary with
program input, the stub can decide to not send the work
to an accelerator but to run it on the host. Additionally,
if the ideal accelerator is currently busy the stub can
decide to either wait or send the work elsewhere, thus
allowing the program to adapt to external workloads.

We have begun to develop this tool primarily within
the ROSE compiler frame-work [11], initially targeting
x86, Tilera and GPGPUs. We also use a GCC plu-
gin to extract the “features” of each function and the
WEKA [10] machine learning software to prototype
performance predictors – together these perform the
characterization of each function. Finally, x86 is the host
architecture, but to run code on the Tilera platform we
use MPI to transfer data and control and we use existing
tools to translate code to CUDA to run on GPGPUs.

A. Characterization: Prediction

To decide how to partition a program it is necessary
to predict which architecture each function is best suited

to. We propose utilizing machine learning to produce
this prediction. We chose this direction as machine
learning has been shown to be capable of finding the
structure underlying different models. This is essential
for providing portable performance as the interactions
between code, the compiler and the hardware architec-
ture are extremely complicated to manually model. We
are currently examining two possible machine learning
models: an execution time predictor and a classifier. The
predictor should be able to predict how long a function
will take to execute on each architecture, whereas the
classifier will pick the architecture that a function is
most-suited for. We are currently prototyping these in
WEKA based on linear models but plan to investigate
more modern machine learning methods. Each of these
models require very different program descriptions to
operate. The execution time predictor requires low-level
instruction counts supported by profiling data, as execu-
tion time varies with inputs. A classifier, however, does
not require profiling data and can produce an answer
from higher-level features of a function but without
a predicted execution time it is difficult to balance
computation with data transfer requirements. Both of
these approaches involve an off-line training stage, but
only the final model is integrated into the compiler so
the effect on compilation time is negligible.

B. Characterization: Feature Extraction
To gather the features of the application required to

support the two predictors described above we have
implemented a GCC plugin. To try to describe a
function this captures the run-time functionality, such
as integer/floating point calculations, logic operations,
memory accesses, control-flow statements, etc. It exam-
ines GCC’s internal intermediate representation (GIM-
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Fig. 2. The performance of a subset of the NASA Parallel Benchmarks on different architectures, relative to a single-core x86 processor. The
x86 and Tilera run OpenMP code, the GPU runs hand-tuned OpenCL code. For these benchmarks the complete program run-time is reported,
including the time to build the OpenCL kernels.

PLE) to collect this data, and produces a human-
readable/machine-processable description of each func-
tion.

C. Mapping Kernels: Processing

We use an annotated version of the input program’s
call-graph to decide the mapping of kernels to partitions.
We annotate the call-graph such that the edge between
two nodes (i.e. two functions) has a weight equal to the
amount of data that must be transferred to and from the
function. This may not be known at compile-time, so
run-time checks can be inserted. Additionally, each node
in the graph is annotated with it’s predicted performance
on each compatible architecture. We consider a compu-
tational kernel to be a sub-graph of the call-graph with
a single entry point, ek, that marks the “root” of the
graph. Generally, if a sub-graph represents a kernel and
has multiple exit points (i.e. it calls a function outside
of its partition) then this can be resolved by cloning
the external function. Similarly even if a sub-graph has
multiple entry points these are just another partition’s
exit points, so again, these can be cloned. For example,
a frequently used helper function may be connected to
many partitions, but assuming it is itself a leaf function
then it can cloned without issue.

To decide on which partition to place a kernel, a
traversal beginning at ek is performed. For each architec-
ture the traversal accumulates the predicted run-times of
every node in the sub-graph producing a per-architecture
prediction for the total run-time of the kernel. Finally, the
edge weight (the amount of data that must be transferred
to and from ek) is considered for each partition; for
x86, this cost is zero, but for the Tilera and GPU, the
time to transfer the data over PCIe must be included
in the mapping. If the exact data-transfer requirements

are known at compile time then kernel can be mapped
directly to the architecture with the minimal execution-
time. In general, however, data-transfer requirements can
only be known at run-time so code can be produced
for both the host and the optimal accelerator so that the
mapping decision can be deferred to run-time. This also
now allows the program to adapt to external workload
meaning it can run on a sub-optimal architecture if that
means it will complete more quickly than waiting for
the ideal hardware.

D. Mapping Kernels: Strategies

There are many strategies that can be used to de-
cide the mapping of kernels to devices, based on the
characteristics of the application and the needs of the
user. The most obvious mapping strategy is mapping
kernels to accelerators to obtain the maximum possible
speedup. In this instance, the tool will seek to minimize
the predicted run-times and data transfer overheads of
the kernel subgraph – the kernel will be mapped to
the architecture with the shortest run-time. A varia-
tion of this idea involves using the predicted run-times
to distribute a percentage of particularly large kernels
across multiple devices, increasing the parallelism at
a very coarse-grained level. Another strategy the tool
will consider is optimizing for power usage. In some
settings where power usage is a limiting factor (e.g.
server environments), utilizing machines efficiently is
a key point. In this situation, the Tilera coprocessor
becomes an attractive option; although it does not match
the computational power of modern x86 processors or
a GPGPU, it consumes less than 50% of the power
of an AMD Opteron 6376 and less than 25% of the
power of an NVIDIA GTX 560; the Tilera is a strong
candidate in this space. Additionally, the partitioner can



ekDevice Host

Fig. 3. The call-graph for an application. The kernel, represented by
the sub-tree rooted at entry function ek , is analyzed and mapped to
a device based on the machine learning model. The kernel does not
have to be a tree, but it must have a single entry/exit point, though
function cloning can help satisfy this requirement in some cases.

map kernels speculatively, if the user expects external
workloads to impact the performance of the application
then the kernel can run on one of several candidate
architectures. In this instance, the tool can speculatively
map a kernel to these different architectures at compile
time so that if the “best” device for the kernel is busy
with another application, the kernel can be seamlessly
run on another architecture. Supporting this will require
run-time decision making based on information obtained
from the operating system about system load and device
availability.

E. Code Refactoring

Once a kernel has been mapped to an architecture, the
partitioning tool must perform the code refactoring nec-
essary to move the kernel to another platform, including
all necessary handshaking and data transfer.

Creating Partitions: The partitioner either must be
supplied with a configuration file or it must query the
system to determine which platforms are available for
the partitioner to utilize. If there are functions that are
to be run on a particular platform, it creates an empty
partition for it.

Analysis of Functions: The partitioner must deter-
mine for each kernel whether it is suitable for parti-
tioning. Function declarations without a visible body
(e.g. library functions) cannot be partitioned for several
reasons: first, the code to perform communication cannot
be inserted and second, parallelization analysis cannot
be performed. During analysis, we must discover the
inputs and outputs of a kernel. This becomes especially
important with separate memory spaces; any change
in the device memory space must be reflected in the
host memory space. Function argument lists and return
statements provide the basic inputs and outputs of a
function, but the semantics of global variables and func-
tion side-effects must be obeyed. For those functions

myFunction( ... (inputs) ... )
{
    for(...)
    {
        ... loop logic ...
    }
    return output;
}

myFunction( ... (inputs) ... )
{
    sendInputs(partition);
    ...
    (other concurrent calculations)
    ...
    receiveOutputs(partition);
    return output;
}

myFunction()
{
    receiveInputs(host);
    for(...)
    {
        ... loop logic ...
    }
    sendOutputs(host);
}

Host Device

Fig. 4. Code transformation performed by the partitioner. The original
function is transformed into a stub for communication while the kernel
is moved to the specified partition.

that use dynamically allocated data, data transfer sizes
must be discovered at run-time – the partitioner inserts
the necessary probes to resolve these. During analysis,
the tool also maintains a list of all functions used in
the kernel subgraph. Any functions called during kernel
execution are also analyzed to make sure they can
be placed on a separate partition, with some relaxed
constraints. When the program is restructured, they are
moved with the kernel to the other partition.

Re-structuring the Program: Once a function has
been analyzed and deemed appropriate for partitioning, it
must be moved to the other partition. We must, however,
also insert code to perform the handshaking necessary
to launch the kernel on the other partition – figure 4
shows how the code is transformed. The function body
of the kernel is lifted out of the abstract syntax tree
(AST) of the host partition and moved to the device
partition’s AST. The original function body on the host
is transformed into a simple stub which encapsulates
all communication with the device. First, a call on
the host side will notify the device that it wants to
execute a particular kernel. Then, calls are inserted to
transfer inputs to the kernel; similarly, calls are inserted
to transfer outputs back to the host partition. In this way,
all communication between the host and accelerators
is handled by the partitioner, relieving the programmer
of hand-coding data movement. To know how much
data to transfer, the size of every memory block must
be known. To support this we have written a memory
management library that wraps malloc and siblings,
and provides hooks for the partitioner to record the sizes
of static memory allocations. Using this library, the run-
time mapper can request the size of the memory block
associated with any pointer. The calls to transfer data
are specific to the accelerator. For the Tilera board, MPI
calls are used to communicate with the processor over
PCIe. The GPU requires calls to the CUDA run-time



(cudaMalloc and cudaMemcpy) to transfer data. If
the kernel remains on the host CPU, no data movement
(or, code refactoring) is necessary.

Final Steps: Once the program has been restructured
into partitions, each partition must be compiled for
its particular device. In the case of x86 and Tilera,
this involves straightforward building with a compiler
that supports OpenMP/MPI. For the GPU partition the
kernels must be converted to a GPU language such
as CUDA. Much work has been put into investigating
methods of performing this transformation, and one of
these tools [13, 15] will be used to refactor the GPU
partition into CUDA code.

III. RELATED WORK

Characterizing programs is a common step in tradi-
tional manual optimization, but more recently there has
been research into doing this automatically. Milepost
GCC by Fursin et. al. [7] uses machine learning to
choose optimal optimization options for an application.
They provide an in-depth discussion of how program fea-
tures describe an application but they focus on features
and models that attempt to choose the best subset of
optimization flags, rather than features that characterize
a program’s performance. Thoman et. al. [18] describe
ways to characterize platforms based on features perti-
nent to performance on heterogeneous systems, such as
arithmetic throughput, complexity of the memory sys-
tem, branching penalties and run-time overheads. They
developed a micro-benchmark suite, µCLbench, that
contains a set of small OpenCL benchmarks that analyze
these characteristics. They used this information, how-
ever, to hand optimize applications rather than attempting
to build a tool to perform automatic optimization.

Several groups have studied partitioning and mapping
of programs on heterogeneous systems; in particular,
there has been a focus on systems containing a multi-
core CPU and a GPU. Kim et. al. [12] proposed
SnuCL, a run-time system targeting heterogeneous clus-
ters. SnuCL expands on OpenCL semantics so that a
cluster is simply viewed as a collection of compute
devices (each multi-core CPU or GPU is considered a
computation device). While the SnuCL run-time maps
kernels to devices, it does not make any distinction
between CPU and GPU devices, ignoring the opportunity
to select the most appropriate architecture for a kernel.
Luk et. al. [14] describe an adaptive approach, used
in their heterogeneous programming framework Qilin,
for executing a kernel simultaneously on a CPU and
GPU. Their approach uses curve fitting to build an
empirical model of the application’s execution time
that can be analyzed to find a near-optimal mapping
of the kernel onto the two platforms. Their approach,
however, requires a training run for each new application

to construct the initial model, the tool cannot learn
from previous data. Grewe and O’Boyle [8] present a
methodology for statically mapping OpenCL programs
to run a single computational kernel simultaneously on
a CPU and GPU. They use a machine learning-based
approach to construct prediction models based on static
program features. Features are collected at compile time
for a given application and the machine learning model
makes a prediction for mapping the OpenCL kernels, but
no partitioning is performed so the OpenCL kernels must
be provided by the programmer. They did, however, later
extend this [9] with a framework that generates OpenCL
kernels from OpenMP parallel blocks and decides on
which platform (CPU vs. GPU) the computational ker-
nel should run. Their framework applies several GPU-
specific optimizations to the generated OpenCL code and
then uses a machine learning model to decide at run-time
on which architecture to run. They only consider CPU
+ GPU, and not the effect of external workload.

Other works have also looked at compiling non-GPU
code for GPUs. Lee et. al. [13] developed OpenMPC, a
tool built on top of Cetus [4] that attempts to translate
the task-level parallelism of OpenMP into the data-level
parallelism of CUDA. Par4All [15] expands this scope
by accepting sequential C and Fortran as input and
generating CUDA, OpenCL, OpenMP or MPI as output.
Neither of these, however, consider partitioning.

Finally, other researchers have considered external
workloads in non-partitioning contexts. Emani et. al. [5]
applied machine learning to develop a heuristic that de-
termines at run-time how many threads a given OpenMP
parallel block should use based on the external workload
of the system. The heuristic combines static program
features (generated at compile-time) and external work-
load information (obtained via calls to a run-time library)
to make the decision. Alternatively, Saez et. al. [16]
support external workloads for single-ISA heterogeneous
systems via the operating-system scheduler, but do not
support fully heterogeneous systems.

IV. CONCLUSION

We have presented our position that parallel applica-
tions need to be partitioned across heterogeneous hard-
ware to achieve optimal performance and have shown the
differing performance characteristics of three separate ar-
chitectures to motivate this. We have proposed the design
of a tool that can perform this partitioning, considering
either performance or power while also being capable of
adapting to external workload.
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