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ABSTRACT
The automatic generation of instruction set extensions (ISEs) to
provide application-specific acceleration for embedded processors
has been a productive area of research in recent years. The use of
automatic algorithms, however, results in instructions that are rad-
ically different from those found in conventional ISAs. This has
resulted in a gap between the hardware’s capabilities and the com-
piler’s ability to exploit them. This paper proposes an innovative
high-level compiler pass that uses subgraph isomorphism checking
to exploit these complex instructions. Our extended code generator
also enables the reuse of ISEs designed for one application in an-
other, which may be a newer version of the same application or a
different one from the same domain. Operating in a separate pass
permits computationally expensive techniques to be applied that are
uniquely suited for mapping complex instructions, but unsuitable
for conventional instruction selection. We demonstrate that this
targeted use of an expensive algorithm effectively controls over-
all compilation time. The existing, mature, compiler back-end can
then handle the remainder of the compilation. Instructions are au-
tomatically produced for 179 benchmarks, resulting in a total of
1965 unique instructions. The high-level pass integrated into the
open-source GCC compiler is able to use the instructions produced
for each benchmark to obtain an average speed-up of 1.26 for the
ENCORE extensible processor.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code generation

General Terms
Design, experimentation, performance

Keywords
Code generation, instruction set extensions, subgraph isomorphism

1. INTRODUCTION
Specializing processors for a particular domain is an effective way
of increasing the performance achievable for a given level of power
consumption. The most obvious examples of this are the differ-
ent processor families for different domain areas. Digital Signal

Processors (DSPs) are based on VLIW or static superscalar de-
signs, with scratchpad memories and specialized instructions (e.g.
a multiply-accumulate, MAC, that is common in DSP tasks). Other
processor families include Network Processors, or general purpose
embedded processors ranging from microcontrollers, used in ev-
erything from hard-disk drives to cars to washing machines, up to
high performance processors used in portable media players, smart-
phones, netbooks, etc.

While selecting the correct processor from the correct family and
then configuring it appropriately results in a processor well-match-
ed to a task, designing custom hardware can dramatically reduce
the power required for the targeted task [12]. Taking this idea
to its full extent results in Application Specific Integrated Circuits
(ASICs), which are very high performance and low power, but take
time and effort to develop so they are neither low cost nor have a
short time-to-market. Additionally, once they have been deployed
their functionality is set, new features may not be implemented
and bugs cannot be fixed. An increasingly popular compromise
between ASICs and general purpose embedded processors are Ap-
plication Specific Instruction-set Processors (ASIPs). These pro-
cessors take a pre-verified baseline processor as a core and add ex-
tension instructions, thus standard tasks can use the baseline pro-
cessor but critical kernels can be programmed to use the extension
hardware. This strikes a balance between performance and time-
to-market, and the pre-verified baseline avoids much of the risk
involved in developing new hardware.

Manually designed ASIPs can outperform general purpose embed-
ded processors, use less power and are quicker and cheaper to de-
sign than ASICs [13]. Using Automated Instruction Set Extension
(AISE) to automatically design ASIPs, however, improves on this
yet again. A set of automated tools can do this by profiling the
application to find hot-spots and analyzing the data-flow at these
spots to produce instruction definitions. These definitions can then
be used to automatically create the hardware based on the data-flow
graphs [5]. Examples of such extensible processors are the SYNOP-
SYS ARC 600 and 700 series, the TENSILICA XTENSA, the ARM
OPTIMODE and the MIPS PRO series.

Using AISE to design ASIPs is an effective way to design hard-
ware [11]. The problem, however, is that the capabilities of com-
pilers lag behind the features of the hardware. This paper, therefore,
investigates how the compiler can effectively use an AISE produced
processor.

The standard methodology for using extension instructions within
programs is for the AISE tool to note where it finds each exten-
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d a t a = i n p u t ;
c o e f = c o e f f i c i e n t ;
sum = 0 . 0 ;
f o r ( i = 0 ; i < 8 ; i ++) {

# t e rm1 = ∗ d a t a ++;
# t e rm2 = ∗ c o e f ++;

sum += term1 ∗ t e rm2 ;
}
∗ o u t p u t = sum ;

.

(a) Snippet from UTDSP lmsfir 8-
1 ptrs.

 Vin 0

 Vout 0  Vout 1
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(b) Extension instruction generated from the
code in figure (a).

d a t a = i n p u t ;
c o e f = c o e f f i c i e n t ;
sum = 0 . 0 ;
te rm1 = ∗ d a t a ++;
te rm2 = ∗ c o e f ++;
f o r ( i = 1 ; i < 8 ; i ++) {

sum += term1 ∗ t e rm2 ;
# t e rm1 = ∗ d a t a ++;
# t e rm2 = ∗ c o e f ++;

}
sum += term1 ∗ t e rm2 ;
∗ o u t p u t = sum ;

.

(c) Snippet from UTDSP lmsfir 8-
1 ptrs SWP.

Figure 1: The extension instruction in figure (b) was generated from the code in figure (a). It is possible, however, to map it to both
the code in figure (a) and (c). The lines of code that it implements are marked by a #, it executes four iterations of those lines in one
instruction as GCC unrolls both loops by a factor of four. Figure (c) is the software pipelined version of figure (a).

sion, but there is no compiler support for the generated ISEs. This
is due to the directed acyclic graph (DAG) structure and complex-
ity of the ISEs, which typically operate on more than two operands
(up to 12 in our case) and generate more than one result (up to
8). Lack of compiler support is acceptable in the situation where
a single program is being accelerated, but it creates an issue if the
program needs to be changed after the processor has been fabri-
cated. Re-running the AISE tool may generate different instruc-
tions requiring an engineer to manually map the old extensions to
the new code, which is both time-consuming and error-prone [12].
It would be more appropriate for the compiler to automatically per-
form the mapping for the engineer. This, however, turns out to
be a difficult task. The Instruction Set Extensions (ISEs) produced
by AISE are often far too complicated for conventional tree-based
instruction selection (indeed, the instructions are often DAGs, not
trees, see figure 1(b)), and they are often far too large for peephole-
based instruction selection. Some form of graph-based instruc-
tion mapping is required instead; this has been investigated pre-
viously [16, 10, 19], but for much smaller instructions than those
produced by AISE.

1.1 Motivating Example
Figure 1 shows short snippets of codes from the UTDSP lmsfir 8-1
ptrs benchmark (figure 1(a)) and a version of the program which
has been software pipelined (figure 1(c)). Figure 1(b) shows an ex-
tension instruction that was generated for the code in figure 1(a). It
represents two sequential sequences of pointer incrementation (the
two sequences can be calculated in parallel). The long sequences
are possible because the GCC optimizer unrolled the loops by a fac-
tor of four. In a conventional AISE setup it would not be possible to
re-use the extension instruction in a different piece of code because
(a) rerunning the AISE tool on different code would result in dif-
ferent instructions being generated, or (b) the graph-based form of
the extension instructions (see figure 1(b)) can not be processed by
conventional tree-based instruction selectors. The technique pre-
sented in this paper was able to re-use the extension instruction,
despite the different code-shape. This is because the subgraph still
exists within the different shape so graph-subgraph isomorphism is
able to identify where the instruction can be used. The lines marked
with a # represent where the extension instruction was able to be
used, in both in original file it was generated for, and the software

pipelined version.

Most existing techniques for complex instruction mapping are de-
signed for finding good, i.e. near optimal, solutions when using
small graph-shaped instructions. They do not, however, generally
scale well to very large instructions – most papers perform evalua-
tions using instructions with only two operations in them. E.g. the
approach taken in [9] finds every possible overlapping use of each
instruction before selecting which ones it wants to use. This only
works for small instructions, e.g. to map a single instruction (of
two, three or eight nodes) in a single basic block of one hundred
nodes has a worst-case complexity of

(30
2
)

= 435, or
(30

3
)

= 4,060
but

(30
8
)

= 5,852,926. Although in reality it is unlikely that the
worst case will occur, large instructions are still clearly not practi-
cal with this class of technique. Figure 2 shows the distribution of
the number of nodes in instructions and basic blocks across all 179
benchmarks used for evaluation.

1.2 Contributions
This paper makes following contributions:

1. We develop a method for mapping arbitrary graph-shaped in-
structions (both disjoint and not) to arbitrary programs. The
novel aspect of the mapper is that it performs instruction
mapping in the middle-end instead of the back-end. This al-
lows it to focus only on extension instructions, that the back-
end cannot exploit. The mature and tuned back-end performs
effective instruction selection for the code that is not mapped
to extension instructions.

2. We perform an extensive evaluation using 179 benchmarks
from seven benchmark suites obtained from five sources. Re-
sults are generated using a hardware-verified cycle-accurate
simulator. Additionally, the instruction mapper is evaluated
using extension instructions generated for programs that are
similar (but not identical to) the programs that they are mapp-
ed to, demonstrating the compiler’s capability to re-use ISEs
in programs other than the one they have been generated for.
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(a) Distribution of size of extension instructions.
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(b) Distribution of size of basic blocks (logarithmic scale).

Figure 2: The distribution of the number of nodes in the graphs used for graph-subgraph isomorphism.

1.3 Overview
The remainder of this paper is structured as follows. In section 2
we introduce extensible processors and the existing approaches to
automated instruction set extension. This is followed in section 3
by a presentation of our novel code generation methodology for
AISE generated instruction patterns. We demonstrate the effective-
ness of our approach through experimental evaluation in section 4
before we discuss related work in section 5. Finally, in section 6 we
summarize our results, conclude and provide an outlook to future
work.

2. BACKGROUND
This section provides a short overview of the technologies relevant
to the work of this paper.

2.1 Extensible Processors
Extensible processors are based on the premise that processor per-
formance, die area, and power consumption can be improved if
the architecture of the processor is extended to include some fea-
tures that are application-specific. This approach requires an abil-
ity to extend the architecture and its implementation, as well as the
compiler and associated binary utilities, to support the application-
specific extensions.

Architecture extensions begin with the capability to add custom
instructions to a baseline instruction set. In their simplest form
these may be predefined packs of add-on instructions, such as the
ARM DSP-enhanced extensions included in the ARM9E [3], the
various flavors of MIPS Application Specific Extensions [17], or
SYNOPSYS’ floating-point extensions to the ARCOMPACT instruc-
tion set [2].

These are domain-specific extensions, they can be used across many
related tasks. Application-specific instruction set extensions are
not predefined by the processor vendor but are instead identified
by the system integrator through analysis of the application. To
allow such instructions to be incorporated into a pre-existing pro-
cessor pipeline, there must be a well-defined extension interface.
From a high-level architecture perspective this interface will al-
low the extension to operate as a “black-box” functional unit at

the execute (Ex) stage of a standard RISC pipeline. This is an over-
simplification though, standard RISC instructions are two-input and
one-output. Effective extension instructions require this constraint
to be relaxed as extensions exploit the parallelism available in large
instructions. This, therefore, generally requires an extended or ad-
ditional register file, hence the need for an extension interface.

Practical extensible processors for the embedded computing mar-
ket, such as those from SYNOPSYS and TENSILICA, normally have
single-issue in-order pipelines of 5-7 stages. This permits operat-
ing frequencies in the range 400-700MHz at the 90nm technology
node. Extension instructions may be constrained to fit within a
single clock cycle, or may be pipelined to operate across multiple
cycles.

The representation of instruction set extensions varies from one
vendor to another, but essentially describes the encoding and se-
mantics of each extension instruction in ways that can be under-
stood by both a processor generator tool and all of the software
tools (e.g. compilers, assemblers and simulators). There follows
a process of translating the abstract representation of the extension
instructions to structural form using a Hardware Description Lan-
guage (HDL) such as VERILOG or VHDL. This is then incorporated
into the overall HDL definition of the processor, that is then synthe-
sized to the target silicon technology or perhaps to an FPGA.

2.2 Automated Instruction Set Extension
Many algorithms for AISE have been described in the literature,
[11] provides a comprehensive survey of the topic. The algorithm
used for the generation of ISEs in following sections of this paper,
however, is ISEGEN [5].

The most basic constraints on extension instructions are:

1. The template is convex (i.e. there is no dataflow path between
two operations in the template that includes an operation that
is not in the template), so that it may be scheduled.

2. Input and output port constraints are met (i.e. the number of
register input and output ports are sufficient), so that it may
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Figure 3: The structure of passes within GCC and MAPISE.

be implemented.

Every node in the basic block implements some simple operation,
in the model there are hardware and software costs for each oper-
ation. The hardware cost is the fraction of a cycle (maybe greater
than one cycle) that it takes to perform the operation. The software
cost is the number of cycles the standard instruction that performs
this operation takes to complete. Essentially, the AISE algorithm
generates data-flow graph templates by iteratively attempting to
grow extension instructions. The benefit of adding each node to
the current “cut” (instruction) is considered by looking for instruc-
tions which will replace many software cycles with a few hardware
cycles. Following the generation of templates from basic blocks,
the templates are checked for isomorphism with one another so as
duplicates may be eliminated, then ranked using their per-execution
gain.

3. METHODOLOGY
The tool that implements the techniques described in the paper,
MAPISE, works as a series of sub-passes, as shown in figure 3.
First a graphical intermediate representation (IR) form is built, then
extension instructions are mapped to that. Finally the original GIM-
PLE is modified.

3.1 Integration into GCC
MAPISE is implemented in GCC 4.2. GCC operates in four main
stages: a front-end, a high-level middle-end, a low-level middle-
end and a back-end. The pass presented in this paper, MAPISE,
runs at the end of the high-level middle-end while the IR is still in
SSA form.

GCC uses several IRs. The front-ends translate the input source
code into GENERIC, a high-level IR. This is then lowered into
GIMPLE, a medium-level IR used by the high-level middle-end.
GIMPLE can be used in both an SSA and a non-SSA form, but most
high-level optimization passes operate on the SSA form, including
MAPISE. The GIMPLE form is then lowered again into a low-level
IR: RTL (register transfer language). Low-level optimization and
target specific passes operate on RTL. Finally the back-end per-
forms instruction selection on the RTL form ensuring all operations
have a one-to-one mapping with assembly. These operations are
also annotated with register and scheduling constraints that are used
by the register allocator and the scheduler respectively before the
RTL is finally converted into assembly.

The instruction mapper presented in this paper, MAPISE, exploits
GCC’s support for extended inline assembly. This is required to
work around a lack of support for specific features that an exten-
sion instruction mapping pass requires. The most unusual require-
ment is the need to support an arbitrary number of extension units
with a single compiler binary. If any changes are made to a GCC
back-end then GCC must be recompiled. A processor designer or
application developer may be evaluating several hundred extension
configurations as a design space exploration exercise. Even if the
process is automated this would likely still hinder productivity. The
implementation described in this paper avoids this by taking a de-
scription of the extension unit as part of its input. This way, the
requirement of deploying a single compiler install can be satisfied,
while still supporting an arbitrary number of extension units.

This requirement can be satisfied by inserting ASM statement op-
erations into the IR. These are usually generated by the front-end
when a program contains inline assembly. No other passes in GCC
insert ASM operands into the IR but the alternative approaches
would require GCC to be recompiled with each change. It is worth
noting that GCC’s extended ASM operations require a precise defi-
nition of the operation’s dependencies and outputs, this allows the
optimization passes to continue to be effective even when ASM
statements are present.

If MAPISE mapped any extension instructions onto a function,
then once the mapping pass is complete the pass manager is con-
figured to re-run loop-invariant code-motion as the mapping pass
introduces various temporaries that may benefit from being hoisted.

3.2 Construction of Graphical IR
As MAPISE is based on graph-subgraph isomorphism checking, it
must operate on a graphical intermediate representation (IR). For
this purpose an IR called DFG (Data-Flow Graph) was specified by
the author of ISEGEN. As this IR was not going to be used for
compilation it did not need to be complete. For a given program
the DFG representation is a list of basic blocks with no control-
flow information describing how they link together. This is ideal
for the purposes of AISE tools since they only look for dataflow
graphs within basic blocks, control flow information is extraneous.

Each basic block is a list of nodes and edges and each possible
node-type has a one-to-one mapping to some type of GIMPLE node.
The converse is not true, however, GIMPLE has many types of
nodes not supported by DFG.
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(a) A disjoint extension instruction.
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(b) An extension instruction where the value saved in rN

is also used internally.

Figure 4: Example extension instructions automatically generated for an AES benchmark.

For the purposes of AISE, a pass was created in GCC that iterates
over the GIMPLE representation of a program and produces a DFG
representation. The representation is then serialized into XML and
the resultant information transferred to the AISE tools.

MAPISE also needs to operate in DFG because the extension in-
struction definition is provided to it in XML DFG format. MAPISE
therefore processes GIMPLE to create a list of DFG basic blocks and
parses the provided XML to create a list of DFG instructions. The
manner in which these two tasks occur is completely mechanical
and therefore not discussed here. At this stage, however, MAPISE
has to do some additional post-processing of the DFG.

Firstly, cast nodes need to be removed as the XML DFG provided
will have already had this done on the basis that the hardware im-
plementation of the extension instructions operate on 32-bit arith-
metic. Secondly, pointer aliasing information is used to add virtual
dependencies between DFG nodes if GCC’s virtual use and defines
state that two nodes are dependent. This means that if operation
X writes to memory, and operation Y reads from what may be the
same memory location then Y has a virtual dependence on X . This
means that Y must occur after X .

Finally, the VFLIB implementation of the VF2 algorithm [8] that
is used to perform graph-subgraph isomorphism checking requires
graphs to be in its own format, so for every basic block and every
extension instruction definition an additional representation is built.

3.3 Matching Subgraphs
To find where extension instructions may be mapped, a greedy
search strategy is used. The extension instructions are sorted by
their expected gains. Then, for each basic block every instruction
is iterated over. The basic blocks are simply iterated over from start
to end, the instructions, however, are ordered according to their ex-
pected benefit – the best instructions are considered first. Each ba-
sic block and extension instruction pair is passed to VFLIB and if
the instruction is a sub-graph of the basic block then a match is
recorded. Every DFG node that was just mapped to an extension
instruction gets marked as such to avoid a node being mapped to
multiple instructions. The same pattern that was just mapped is re-
tried, in case the same pattern may be reused. This process repeats
until every extension instruction has been checked.

When VFLIB finds a place to map an extension instruction, it is

necessary to check the mapping is viable prior to its application.
As a consequence of MAPISE supporting disjoint extension in-
structions it is possible for VFLIB to find mappings which vio-
late convexity constraints. Convexity violations can occur when
one of two (or more) disjoint parts of an instruction become in-
directly dependent on the other part of the instruction. The re-
sult is that the extension instruction must be scheduled both before
and after the intermediary node(s): a clear impossibility. This can
only happen with extension instructions which contain disjoint sub-
graphs, such as in the instruction in figure 4(a). It contains three
unconnected sub-graphs and according to the graph-subgraph iso-
morphism definition (and thus also the VF2 algorithm) each sub-
graph may be mapped to anywhere in the graph, irrespective of
indirect dependencies which means that convexity violations are
possible. If convexity constraints are violated then the key offend-
ing node is marked as unusable and the extension instruction is
tried again. This is allowed to occur a maximum of 10,000 times
per basic block/extension instruction pair. Convexity violations are
quite common: across the set of 179 benchmarks it was observed
that mapping was re-run 279,851 times due to convexity violations
and the 10,000 iteration limit was reached 97 times.

3.4 Determining if Two Nodes are Equivalent
A function is provided to VFLIB that when given one node from
the graph (basic block) and one node from the subgraph (exten-
sion instruction definition) it determines whether or not they are
equivalent. As this function is performance critical (it accounts
for 46% of MAPISE’S run-time, see table 1) it attempts to estab-
lish non-equivalence as quickly as possible. This does not change
the complexity of the problem as, in algorithmic terms, the node
equivalence function can be thought of as having a constant exe-
cution time. In practice, however, reducing the average duration of
this constant-time significantly reduces the run-time of MAPISE as
this function is called so frequently.

Various other properties must be satisfied for two nodes to be con-
sidered equivalent:

• If the nodes do not perform the same operation, have differ-
ent data types or the basic block node takes a 64-bit value as
input, then the nodes are not equivalent. If these nodes are
constants then they must have the same value, or they are not
equivalent.
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• If multiple extension instruction nodes read from a single in-
put register, such as rD or rE in figure 4(a), then an addi-
tional node must be inserted into the extension instruction
definition to merge the two edges. Without this the 12-input
instruction in figure 4(a) may attempt to fit up to 15 values
into 12 slots.

• If the basic block node has already been mapped to another
extension instruction then it cannot be mapped to this one.
If the SSA name that the basic block node writes to is used
outside of the current basic block then the extension instruc-
tion node must write its value to an output or they are not
equivalent. For example, in the instruction in figure 4(b)
there is a node which is connected to both another internal
node and the output register rN. If a result of a basic block
node is used in a different basic block then that node could be
mapped to that instruction node, but no other internal node.
If it was mapped to different internal node then the value
would never be saved and would thus not be accessible when
later required.

• The two nodes must have the same number of inputs and the
same number of outputs. If a node has two inputs then the
predecessors of both nodes must be similar (same operator
type, same data type). This is necessary because the VF2
algorithm does not consider edge order, it would consider
A−B to be equivalent to B−A. If the current node is com-
mutative and the predecessors do not match then they may
be swapped and rechecked.

3.5 Exploiting Matches
DFG is an incomplete IR and therefore it is not possible to convert it
back into GIMPLE. Since every DFG node is linked with a GIMPLE
node, the mappings annotated on the DFG can be used to determine
which parts of the GIMPLE to remove instead.

A side-effect of performing mapping on a graphical form, and then
inserting the extension instruction into the linear IR is that after
the inline ASM has been inserted the IR may no longer be in a
valid schedule. It is, however, guaranteed that a schedule exists,
therefore a simple scheduling pass is used to reorder the GIMPLE
into a valid schedule. This is not associated with the instruction
scheduling performed by the back-end since there is no concept of
latency in GIMPLE.

4. EMPIRICAL EVALUATION
4.1 Experimental Setup
To obtain performance results a hardware verified cycle-accurate
simulator [6] for the ENCORE extensible processor [1] is used. The
ENCORE is largely compatible with the SYNOPSYS ARC 700 pro-
cessor. Each of the 179 benchmarks had cycle counter annotations
added to them so as I/O or book-keeping code could be excluded
from the performance evaluation. Each benchmark was compiled
with vanilla GCC and with MAPISE. The speed-ups presented are
the performance of the MAPISE produced code relative to the GCC
code. The simulator has been extended with a vector register based
encoding which is used to allow a 32-bit instruction to have up to
12-inputs and 8-outputs. Note that this means that the extended
register file has 3 read-ports and 2 write-ports, each 128-bits wide.

The compiler options used for compiling each benchmark are -O2

and -fprofile-use. Profiling information is included because
ISEGEN also uses this information. Both tools are influenced by
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Figure 5: The distribution of the number of extension instruc-
tions mapped per-function and per-basic block. The results are
from the aggregate of all 179 benchmarks.

GCC’s optimization decisions. When profiling data is available
GCC will treat hot and cold blocks differently, applying different
compiler transforms. If MAPISE is to see the same view of the
code that ISEGEN does then it must allow GCC to use profiling
data (even if it does not use it itself).

The experiments were run on a Linux system with two dual-core
3.0GHz Intel Xeon processors and 4GB of memory. Though only
a single core was used to ensure timing consistency.

4.2 Summary of Key Results
Figure 6(a) shows the performance speedups achieved when using
MAPISE to map extension instructions to the benchmarks that they
were generated from. Some representative individual results are
presented, as well as aggregate results for each benchmark suite.
The average speed-up obtained over the full set of 179 benchmarks
is 1.26, though it can be seen that certain suites do not benefit from
AISE (e.g. networking benchmarks). Figure 5 shows the distribu-
tion of the number of extension instructions mapped to each ba-
sic block or function. A large number of basic blocks and func-
tion do not use any extension instructions at all, this is expected:
a large portion of each benchmark will be concerned with non-
critical tasks which will not benefit from extension instructions.

The run-times of various tools are presented in figure 6(b). The
left-hand bar for each benchmark or suite is the time it takes for
ISEGEN to identify a set of extension instructions for that bench-
mark. The middle bar is the time that a standard vanilla com-
pile, without extension instructions, takes for each benchmark –
whereas the right-hand bar is the length of time the same task takes
when mapping extension instructions. It can be seen that although
MAPISE is slower than a vanilla compile (an average compile time
of 5.2 seconds instead of 0.8) it never has an unacceptable run-time.
Even a large benchmark like an MPEG-2 encoder only takes 142
seconds to compile. It is also far quicker than generating instruc-
tions, which takes 453 seconds on average, or 3793 seconds for the
MPEG-2 encoder. Table 1 breaks down how long MAPISE spends
on each of its sub-passes. Clearly the actual instruction mapping
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(a) Speed-up due to using extension instructions.

cry
pto

tea

ds
ps

ton
e fir

fix
ed

ee
mbc

1 au
tom

oti
ve

aif
ftr

01

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 co
ns

um
er

mpe
g2

en
c

UTDSP
ed

ge
de

tec
t a

rra
ys

UTDSP
fft

10
24

ptr
s

Cryp
tog

rap
hy

(1
0)

DSPsto
ne

(2
9)

EEMBC-1
Auto

moti
ve

(1
6)

EEMBC-1
Con

su
mer

(5
)

EEMBC-1
Netw

or
kin

g (3
)

EEMBC-1
Offic

e (4
)

EEMBC-1
Te

lec
om

(5
)

EEMBC-2
Con

su
mer

(9
)

EEMBC-2
Netw

or
kin

g (7
)

EEMBC
Cor

em
ar

k (1
)

SNURT
(1

5)

UTDSP
(7

5)

AVERAGE
(1

79
)

0.01

0.1

1

10

100

1000

10000

Ti
m

e
(s

ec
on

ds
)

Time taken to generate extension instructions
Time taken to compile without extensions
Time taken to compile with extensions

(b) The run-time of various tools.
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(c) Time to compile a benchmark without extensions compared to the average time to map one extension instruction to entire benchmark.

Figure 6: The results of using extension instructions. A few representative results are shown on the left of the break, on the right are
aggregate results for each benchmark suite. The number in the brackets is the number of benchmarks in that suite.
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Task Time (s) Time (%) Sub-Task Time (s) Time (%)
Build IRs 27.49 0.9% Parse XML Instructions 9.33 0.3%

Build DFG 5.09 0.2%
Clean BB graphs 7.97 0.3%
Build VF2 graphs 5.1 0.2%

Mapping 2,904.3 96.1% VF2 Algorithm 1,482.6 49.1%
Node Comparison 1,384.9 45.8%
Viability Checking 33.07 1.1%

Register Allocation 6.92 0.2%
GIMPLE Modification 83.43 2.8% Scheduling 82.95 2.7%

Table 1: The total time spent in each sub-pass of MAPISE. The timings are from the summation of all 179 benchmarks.

task dominates, the tool spends 49.1% of its time in the internals
of the VF2 algorithm. Additionally that algorithm makes use of
the node comparison functions, which account for an additional
45.8% of the run-time. Figure 6(c) normalizes MAPISE’S run-
time for a single extension instruction (the MAPISE run-time is
divided by the number of extension instructions processed). This
demonstrates that on a per-extension-instruction basis small bench-
marks (e.g. DSPStone) can take longer for MAPISE to process than
large benchmarks (e.g. EEMBC-1 Consumer). For small kernel-
based benchmarks GCC will tend to unroll inner loops, creating
large basic-blocks which the small number of extension instruc-
tions will map to. For large benchmarks, however, most extension
instructions will be found to trivially not-map to most of the ba-
sic blocks as they are only mappable to a small number of sites.
So the complexity of the graph-subgraph isomorphism problem for
each basic-block and extension instruction pair strongly influences
MAPISE’S run-time.

4.3 Re-use of AISEs
The results of re-using extension instructions on benchmarks that
are similar (but not identical) to the ones that they were generated
for are shown in figure 7. It can be seen that small changes to the
code-shape only result in a small reduction in performance, from an
average speed-up of 1.16 to 1.13. Though in a few outlying cases
the ability to use the extension instructions may be lost completely,
e.g. UTDSP latrnm 32-64 arrays. This demonstrates that MAPISE
is able to effectively use extension instructions even when the orig-
inal program is modified.

5. RELATED WORK
An early piece of work in the area of complex instruction selec-
tion was undertaken by Leupers and Marwedel [15]. They tar-
geted instructions that may be represented as disjoint data-flow
trees, i.e. their operations occur in parallel. For example: instead of
targeting deep multiply accumulate instructions, they target wide
multiply accumulates where the accumulation occurs via an archi-
tecturally visible temporary register and the result of the previous
multiply is accumulated. The problem is encoded as the set of reg-
ister transfer paths possible on the processor, and the set of trans-
fers that each instruction implements. Standard optimal tree cov-
ering is performed on these register transfers and then an integer
linear program is used to find instructions that may cover multiple
register transfers. The type of hardware that this technique targets
is less common now and small parallel instructions have mostly
been replaced with short tree equivalents, reducing the usefulness
of the technique since it was developed. The work was later revis-
ited though [14] to target a parallel form of instructions: sub-word
SIMD. Sub-word SIMD tries to pack small operations into stan-

dard arithmetic instructions, e.g. packing four 8-bit additions into a
32-bit addition. A standard optimal tree covering technique is ex-
tended so that instead of finding a single optimal covering it finds
all optimal coverings. An integer linear program is then used to
find a set of SIMD instructions that is capable of working within
the register constraints that sub-word SIMD introduces. This is an
interesting extension but is not equivalent to the instruction map-
ping requirements of this paper: sub-word SIMD instructions are
far simpler than AISE generated extension instructions.

Arnold and Corporaal [4] extended the standard optimal dynamic
tree programming algorithm to be able to handle instructions with
multiple outputs. In principle, the cost function of the standard dy-
namic algorithm is modified so that when an output of the multiple-
output instruction is used as an input to a node the cost is divided
by the number of outputs. This breaks the dynamic tree covering
algorithm’s ability to find an optimal covering but the effects of that
are not evaluated in the paper.

Scharwaechter et al. [18] continue the development of complex in-
struction mappers by extending the idea of a code-generator gener-
ator to be able to handle parallel instructions. The extended gen-
erator represents basic blocks and instructions as directed acyclic
graphs (DAGs). Several heuristics are used to help reduce a worst-
case exponential run-time down to an average-case linear run-time.
The set of instructions evaluated were the fusion of only two un-
connected simple operations. These are far smaller than the ex-
tension instructions considered in this paper and could potentially
mean this technique is inappropriate for instructions generated for
ASIPs.

Ebner et al. [9] produced a technique for matching graph-based in-
structions based on a SSA representation. The algorithm finds ev-
ery possible (overlapping) place to use each instruction. This has a
worst-case complexity of O(

(n
k
)
) where n is the number of nodes in

a basic block and k in the number of nodes in an instruction, how-
ever in practice the complexity is much lower. Each assignment
then becomes a variable in a partitioned binary quadratic problem,
and is either mapped to an integer linear program for solving op-
timally or is solved heuristically. The technique was evaluated on
the ARM ISA, but again this does not contain any particularly com-
plex instructions. Therefore this technique is not shown to work
with complex extension instructions. The worst-case complexity of
O(

(n
k
)
) makes it very likely the technique will not scale for large in-

structions, as when the number of nodes in an instruction (k) grows
the complexity explodes.

Finally, Clark et al. [7] describe a promising technique that uses
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Figure 7: The results of generating extension instructions for UTDSP benchmarks using pointer arithmetic but then using them with
the array version of each benchmark. The left-hand bar for each benchmark shows the speed-up achieved by using instructions
generated for each arrays benchmark specifically, the right-hand bars show the speed-up achieved by re-targeting the ptrs extension
instructions.

“Full Enumeration – Unate Covering” to allow effective consid-
eration of multiple extension instructions at once. The run-time
requirements are kept under control by heuristically pruning the
search space when it gets too large. This is an alternative solution to
dealing with the problem of using multiple extension instructions,
other than the greedy approach presented in this paper. Unlike this
paper, however, it only considers instructions with at most four-
inputs and two-outputs (opposed to the twelve-inputs and eight-
outputs used in this paper). It also only considers singly connected
graphs – the work in this paper allows instructions to be disjoint
graphs. It is not clear whether the algorithm’s low run times would
be maintainable if these features were added.

6. SUMMARY AND CONCLUSIONS
Techniques for automated instruction set extension, which produce
large, complex extension instructions, have been shown to generate
highly specialized and energy-efficient ASIPs. Without adequate
compiler support, however, making use of these instructions is a
difficult process. In this paper we have demonstrated that by focus-
ing solely on complex extension instructions a high-level instruc-
tion selection pass can use computationally expensive algorithms
while maintaining an acceptable run-time. The conventional com-
piler back-end can then generate scalar code for the remainder of
the compilation. We have implemented our novel instruction se-
lection pass in GCC and evaluated it against 179 benchmarks and
a total of 1965 automatically generated instructions. Our new code
generator is able efficiently exploit complex, automatically gener-
ated instruction set extensions and achieves an average speed-up of
1.26 for the ENCORE extensible processor.

Our future work will focus on the integration of the extended com-
piler into a framework for AISE design space exploration.
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